If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2v^2-13v-24=0
a = 2; b = -13; c = -24;
Δ = b2-4ac
Δ = -132-4·2·(-24)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-19}{2*2}=\frac{-6}{4} =-1+1/2 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+19}{2*2}=\frac{32}{4} =8 $
| 2x/5-5=5x/8 | | X+5x-2=10 | | 5x+7.2=24 | | 2=2(v-9) | | 15=18x+4.09(1-x) | | 1-6u=31 | | 7x+15+-9x=5 | | 15=10x+7.29(1-x) | | 5.10z/4=32 | | X+4x+1=106 | | 0.01q^2=4.7q | | 92x-3=34x+1 | | x+41+x-78=95 | | x+41+x-78+x=95 | | 89x-3=52x+3 | | 76x+3=23-2 | | 45x+5=4x-3 | | 5x+9=9x-8 | | X^3-5x^2+27x-24=0 | | 4=u÷5 | | 61x+4=3x-2 | | 45x+3=5x-2 | | -6.5x+0.004x^2=-13x+0.012x^2 | | x+24=x+160 | | 2-(4x-23)=5(x-2) | | 2(4t-6)=27t+8 | | 1x-4=5x-3 | | 34x+3=2x-3 | | 10x-(9x-8)=15 | | 31=-4x+6x+7 | | 104=2(c+11)+2(c+11) | | 40=2(x+11)+2(x+11) |